
Pasee

Apr 16, 2021

Contents:

1 Quickstart 3

2 Features 5
2.1 Groups . 5
2.2 Self-service registration and password reset . 5
2.3 Tokens with authorization scope . 5
2.4 Users . 5
2.5 Groups . 6

3 API 7

4 Configuration 9

5 Contributing 11
5.1 Quickstart . 11
5.2 Releasing . 11

6 FAQ 13
6.1 How to configure Pasee to use my LDAP server? . 13
6.2 Why a Kisee identity backend settings uses an array of public keys? 13
6.3 Can Pasee expose an OAuth2 or OpenID endpoint? . 13
6.4 Can Pasee use multiple instances of Kisee to hit different identity sources? 13
6.5 I don’t get it, why do I need a private key on Kisee and another on Pasee? 14

7 Indices and tables 15

i

ii

Pasee

The name “Pasee”, inspired from “Kisee” (the IdM), spoken as the french phrase “Passez !”, [ps()].

Pasee is a simple layer over multiple IdMs, typically a Kisee and other identity providers like Twitter, Github, . . .

Contents: 1

Pasee

2 Contents:

CHAPTER 1

Quickstart

For a Pasee to run easily you should start by running a local Kisee.

Once a local Kisee is started follow those steps:

Install pasee in a venv:

pip install pasee

And start it using:

pasee --settings-file example-settings.toml

3

https://github.com/meltygroup/kisee

Pasee

4 Chapter 1. Quickstart

CHAPTER 2

Features

2.1 Groups

Pasee could just gather multiple identity providers, but it add one optional feature: handling groups.

Groups are typically not given by identity providers: from your point of view, twitter says “It’s this person” not “He’s
root”.

2.2 Self-service registration and password reset

Pasee exposes an API for users to register, but it’s not its role to handle identities, so it only forwards blindly those
requests to the main configured identity provider, typically a Kisee instance.

2.3 Tokens with authorization scope

Pasee delivers JWT to your users, a pair of JWT:

• An access token: prooving the identity (and groups) of the user.

• A refresh token: a special token meant only to be used for requesting a new access token.

The access token has short TTL while the refresh token has a longer one, so your clients can use the refresh token to
get new access tokens as needed. The users should never use the refresh token for something else than asking for a
new access token, that’s why we’re not giving groups in the refresh token.

2.4 Users

A user, from a Pasee point of view can be seen as a tuple of (identity_provider, name).

5

Pasee

Obviously two distinct users can share the same name on two distinct identity providers, they still are two distinct
identities, whence the “tuple”.

So, if a user “John” identifies against Pasee, and Pasee uses the twitter backend to proove who he is, he’ll be
identified as "twitter-John", so there’s no name clash between "kisee-John", and "twitter-John".

In a convoluted setup where Pasee delegates to a Kisee named “externals”, which delegates to another Pasee,
which delegates to another Kisee named “internals”, you’ll receive users identified as “externals-internals-ada”. As
you see Pasee is adding the prefixes, Kisee does not.

This way you can use a deep and wide setup of Kisees and Pasees, you’ll never hit a name-clash, and you’ll always
be able to visually spot where a user come from.

2.5 Groups

Groups naming is hierarchical, separated by dots, like “foo.bar.baz”.

Staff members can create any group. One creating a group becomes staff of its own group, (member of
my_very_personal_group.staff).

Staff of a group can:

• Create subgroups, like my_very_personal_group.friends.

• Manage staff of the group.

This applies recursively, let’s play it from scratch:

A staff member (you) creates an admin group, you become automatically member of admin.staff.

As a staff member of admin, you create admin.developers, you become automatically member of admin.
developers.staff.

You add a coworker John to admin.developers.staff.

John add three coworkers, Alan, Ada, and Donald to admin.developers.

At this point, only you can create subgroups or manage users / staff of admin, and only John can create subgroups of
admin.developers, add members to it, or add staff to it.

Hint: You should create a root group per service using Pasee, and use subgroups to handle authorizations, and root
groups for global authorizations, like:

• articles - writers - reviewers

• comments - moderators - . . .

• superusers

• . . .

6 Chapter 2. Features

CHAPTER 3

API

The API is limited to a few endpoints that tends to self-describe themselves.

You can get a JSON-Home on / describing the following resources:

• users used to manage users

• groups used to manage groups

• tokens used by users to create tokens

To test the API you can first create a staff account:

python -m pasee –append –groups staff your_username

7

Pasee

8 Chapter 3. API

CHAPTER 4

Configuration

Pasee uses a toml configuration file like:

host = "0.0.0.0"
port = 8150

Generated using:
#
openssl ecparam -name secp256k1 -genkey -noout -out secp256k1.pem
#
Yes we know P-256 is a bad one, but for compatibility with JS
clients for the moment we can't really do better.
private_key = """-----BEGIN EC PRIVATE KEY-----
..."""

Generated using:
openssl ec -in secp256k1.pem -pubout > secp256k1.pub
public_key = """-----BEGIN PUBLIC KEY-----
MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEEVgsgM7Aliru0XU+OggGC5jxRoZUI4/C
fsNJ8ZUlTKxjn8VzO4Db2ITFvUdyRCQjGRuq5QRJt7a46ZyfrDb+6w==
-----END PUBLIC KEY-----"""

[jwt]
iss = "pasee.meltylab.fr"

[[identity_providers]]
name = "kisee"
host = "127.0.0.1"
port = 8140
protocol = "kisee"
[identity_providers.settings]
public_keys = ["""-----BEGIN PUBLIC KEY-----MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEE/
→˓WCqajmhfppNUB2uekSxX976fcWA3bbdew8NkUtCoBigl9lWkqfnkF18H9fgG0gafPhGtub23+8Ldulvmf1lg==-
→˓----END PUBLIC KEY-----"""]

(continues on next page)

9

https://github.com/toml-lang/toml

Pasee

(continued from previous page)

[[identity_providers]]
name = "twitter"
host = "twitter.com"
port = 443
protocol = "oauth2"
[identity_providers.settings]
app_id = "..."
app_secret = "..."

10 Chapter 4. Configuration

CHAPTER 5

Contributing

5.1 Quickstart

To install dev dependencies, create a venv and run:

pip install flit
flit install --symlink

And run kisee using:

pasee # or python -m pasee

5.2 Releasing

Our version scheme is calver, specifically YY.MM.MICRO, so please update it in pasee/__init__.py (single
place), git tag, commit, and push.

Then to release we’re using flit:

flit publish

11

https://calver.org/
https://flit.readthedocs.io

Pasee

12 Chapter 5. Contributing

CHAPTER 6

FAQ

6.1 How to configure Pasee to use my LDAP server?

Setup an instance of Kisee to use it (not implemented yet), and add this Kisee instance in the
identity_providers of your Pasee instance.

In your Kisee backend you could even expose groups or any meta-informations stored in your LDAP server as JWT
claims. Those claims have to be whitelisted in Pasee configuration to be kept in Pasee-signed tokens (By default,
we only trust identities, from identities backends).

6.2 Why a Kisee identity backend settings uses an array of public
keys?

To help you rotate a Kisee private key by allowing both during the transition.

6.3 Can Pasee expose an OAuth2 or OpenID endpoint?

Yes, feel free to implement it, see current Twitter and Facebook implementations.

6.4 Can Pasee use multiple instances of Kisee to hit different identity
sources?

Yes, but a single one can handle registrations from Pasee. If you want to let your user choose on which Kisee instance
they’re registering, use the Kisee API directly for registration instead of passing registrations thrue Pasee.

13

Pasee

6.5 I don’t get it, why do I need a private key on Kisee and another
on Pasee?

Pasee can use multiple identity providers (OAuth2, OpenID connect, Pasee instances), and will even work without
a Kisee backend. As a Kisee have to sign tokens, and a Pasee have to sign tokens too, they both need a private
key. You could use the same private key on every Kisee and Pasee instances, it won’t break the implementation.
You can obviously use different ones too.

14 Chapter 6. FAQ

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

15

	Quickstart
	Features
	Groups
	Self-service registration and password reset
	Tokens with authorization scope
	Users
	Groups

	API
	Configuration
	Contributing
	Quickstart
	Releasing

	FAQ
	How to configure Pasee to use my LDAP server?
	Why a Kisee identity backend settings uses an array of public keys?
	Can Pasee expose an OAuth2 or OpenID endpoint?
	Can Pasee use multiple instances of Kisee to hit different identity sources?
	I don’t get it, why do I need a private key on Kisee and another on Pasee?

	Indices and tables

