

Welcome to Pasee’s documentation!

The name “Pasee”, inspired from “Kisee” (the IdM), spoken as the
french phrase “Passez !”, [ˈpɑːsə(ɹ)].

Pasee is a simple layer over multiple IdMs, typically a Kisee
and other identity providers like Twitter, Github, …

Contents:

	Quickstart

	Features
	Groups

	Self-service registration and password reset

	Tokens with authorization scope

	Users

	Groups

	API

	Configuration

	Contributing
	Quickstart

	Releasing

	FAQ
	How to configure Pasee to use my LDAP server?

	Why a Kisee identity backend settings uses an array of public keys?

	Can Pasee expose an OAuth2 or OpenID endpoint?

	Can Pasee use multiple instances of Kisee to hit different identity sources?

	I don’t get it, why do I need a private key on Kisee and another on Pasee?

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

For a Pasee to run easily you should start by running a local
Kisee [https://github.com/meltygroup/kisee].

Once a local Kisee is started follow those steps:

Install pasee in a venv:

pip install pasee

And start it using:

pasee --settings-file example-settings.toml

Features

Groups

Pasee could just gather multiple identity providers, but it add one
optional feature: handling groups.

Groups are typically not given by identity providers: from your point
of view, twitter says “It’s this person” not “He’s root”.

Self-service registration and password reset

Pasee exposes an API for users to register, but it’s not its role to
handle identities, so it only forwards blindly those requests to the
main configured identity provider, typically a Kisee instance.

Tokens with authorization scope

Pasee delivers JWT to your users, a pair of JWT:

	An access token: prooving the identity (and groups) of the user.

	A refresh token: a special token meant only to be used for requesting a new
access token.

The access token has short TTL while the refresh token has a longer
one, so your clients can use the refresh token to get new access tokens as needed.
The users should never use the refresh token for something else than asking for
a new access token, that’s why we’re not giving groups in the refresh token.

Users

A user, from a Pasee point of view can be seen as a tuple of
(identity_provider, name).

Obviously two distinct users can share the same name on two distinct
identity providers, they still are two distinct identities, whence the
“tuple”.

So, if a user “John” identifies against Pasee, and Pasee uses the
twitter backend to proove who he is, he’ll be identified as
"twitter-John", so there’s no name clash between "kisee-John", and
"twitter-John".

In a convoluted setup where Pasee delegates to a Kisee named
“externals”, which delegates to another Pasee, which delegates to
another Kisee named “internals”, you’ll receive users identified as
“externals-internals-ada”. As you see Pasee is adding the prefixes,
Kisee does not.

This way you can use a deep and wide setup of Kisees and
Pasees, you’ll never hit a name-clash, and you’ll always be able
to visually spot where a user come from.

Groups

Groups naming is hierarchical, separated by dots, like “foo.bar.baz”.

Staff members can create any group. One creating a group becomes
staff of its own group, (member of my_very_personal_group.staff).

Staff of a group can:

	Create subgroups, like my_very_personal_group.friends.

	Manage staff of the group.

This applies recursively, let’s play it from scratch:

A staff member (you) creates an admin group, you become
automatically member of admin.staff.

As a staff member of admin, you create admin.developers, you become
automatically member of admin.developers.staff.

You add a coworker John to admin.developers.staff.

John add three coworkers, Alan, Ada, and Donald to admin.developers.

At this point, only you can create subgroups or manage users / staff
of admin, and only John can create subgroups of admin.developers,
add members to it, or add staff to it.

Hint: You should create a root group per service using Pasee, and
use subgroups to handle authorizations, and root groups for global
authorizations, like:

	articles
- writers
- reviewers

	comments
- moderators
- …

	superusers

	…

API

The API is limited to a few endpoints that tends to self-describe
themselves.

You can get a JSON-Home on / describing the following resources:

	users used to manage users

	groups used to manage groups

	tokens used by users to create tokens

To test the API you can first create a staff account:

python -m pasee –append –groups staff your_username

Configuration

Pasee uses a toml [https://github.com/toml-lang/toml]
configuration file like:

host = "0.0.0.0"
port = 8150

Generated using:
#
openssl ecparam -name secp256k1 -genkey -noout -out secp256k1.pem
#
Yes we know P-256 is a bad one, but for compatibility with JS
clients for the moment we can't really do better.
private_key = """-----BEGIN EC PRIVATE KEY-----
..."""

Generated using:
openssl ec -in secp256k1.pem -pubout > secp256k1.pub
public_key = """-----BEGIN PUBLIC KEY-----
MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEEVgsgM7Aliru0XU+OggGC5jxRoZUI4/C
fsNJ8ZUlTKxjn8VzO4Db2ITFvUdyRCQjGRuq5QRJt7a46ZyfrDb+6w==
-----END PUBLIC KEY-----"""

[jwt]
iss = "pasee.meltylab.fr"

[[identity_providers]]
name = "kisee"
host = "127.0.0.1"
port = 8140
protocol = "kisee"
[identity_providers.settings]
public_keys = ["""-----BEGIN PUBLIC KEY-----MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEE/WCqajmhfppNUB2uekSxX976fcWA3bbdew8NkUtCoBigl9lWkqfnkF18H9fgG0gafPhGtub23+8Ldulvmf1lg==-----END PUBLIC KEY-----"""]

[[identity_providers]]
name = "twitter"
host = "twitter.com"
port = 443
protocol = "oauth2"
[identity_providers.settings]
app_id = "..."
app_secret = "..."

Contributing

Quickstart

To install dev dependencies, create a venv and run:

pip install flit
flit install --symlink

And run kisee using:

pasee # or python -m pasee

Releasing

Our version scheme is calver [https://calver.org/], specifically
YY.MM.MICRO, so please update it in pasee/__init__.py (single
place), git tag, commit, and push.

Then to release we’re using flit [https://flit.readthedocs.io]:

flit publish

FAQ

How to configure Pasee to use my LDAP server?

Setup an instance of Kisee to use it (not implemented yet), and add
this Kisee instance in the identity_providers of your Pasee
instance.

In your Kisee backend you could even expose groups or any
meta-informations stored in your LDAP server as JWT claims. Those
claims have to be whitelisted in Pasee configuration to be kept in
Pasee-signed tokens (By default, we only trust identities, from
identities backends).

Why a Kisee identity backend settings uses an array of public keys?

To help you rotate a Kisee private key by allowing both during the
transition.

Can Pasee expose an OAuth2 or OpenID endpoint?

Yes, feel free to implement it, see current Twitter and
Facebook implementations.

Can Pasee use multiple instances of Kisee to hit different identity sources?

Yes, but a single one can handle registrations from Pasee. If you want
to let your user choose on which Kisee instance they’re
registering, use the Kisee API directly for registration instead
of passing registrations thrue Pasee.

I don’t get it, why do I need a private key on Kisee and another on Pasee?

Pasee can use multiple identity providers (OAuth2, OpenID connect,
Pasee instances), and will even work without a Kisee
backend. As a Kisee have to sign tokens, and a Pasee have to
sign tokens too, they both need a private key. You could use the same
private key on every Kisee and Pasee instances, it won’t break
the implementation. You can obviously use different ones too.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Pasee’s documentation!

 		
 Quickstart

 		
 Features

 		
 Groups

 		
 Self-service registration and password reset

 		
 Tokens with authorization scope

 		
 Users

 		
 Groups

 		
 API

 		
 Configuration

 		
 Contributing

 		
 Quickstart

 		
 Releasing

 		
 FAQ

 		
 How to configure Pasee to use my LDAP server?

 		
 Why a Kisee identity backend settings uses an array of public keys?

 		
 Can Pasee expose an OAuth2 or OpenID endpoint?

 		
 Can Pasee use multiple instances of Kisee to hit different identity sources?

 		
 I don’t get it, why do I need a private key on Kisee and another on Pasee?

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

